O TEMPO EM GRACELI STÁ RELACIONADO COM SEU SISTEMA DE DIMENSÕES E ENERGIAS. REPRESENTADO POR G* EM SUAS EQUAÇÕES.
* = / * *= = [ ] ω , , .=
Na teoria quântica de campos a ordenação de tempo é útil para tirar produto de operadores. Esta operação é designada por .[1] Para dois operadores A (x) e B (y), que dependem em locais de espaço-tempo x e y nós definimos:
- / * *= = [ ] ω , , .=
Aqui and designam as coordenadas-tempo dos pontos x e y.[2]
De forma explícita temos
- / * *= = [ ] ω , , .=
onde representa a função de passo Heaviside e o depende se os operadores em natureza são Bósonicos ou Férmionicos. Se bosônico, então o sinal de é sempre escolhido, se fermiônico então, o sinal vai depender do número de interligação necessárias para atingir o operador de ordem temporal adequada.[3]
Uma vez que os operadores dependem de sua localização no espaço-tempo (ou seja, não apenas no tempo), esta operação em ordenação de tempo só é coordenada independente se os operadores do tipo espacial [nota 1] em pontos separados comutam.[4] Note que a ordenação tempo é em geral escrita com o argumento de tempo aumentando da direita para a esquerda. Em geral, para o produto de n operadores de campo A1(t1), …, An(tn) o produto do tempo ordenado dos operadores são definidos da seguinte forma:
/ * *= = [ ] ω , , .=
onde a soma é executada em todo p's e sobre o grupo simétrico[5] [nota 2] n graus de permutações e
Matriz de dispersão
[editar | editar código-fonte]A matriz de dispersão [nota 3](ou matriz de espalhamento[6]) de em teoria quântica de campos é um exemplo de um produto de tempo ordenado. A matriz de dispersão transformando o estado em t =−∞ para um estado em t = +∞, pode também ser considerada como uma espécie de "holonomia[7]", análoga à linha de Wilson. Obtemos uma expressão ordenada no tempo devido ao seguinte motivo:
Começamos com esta fórmula simples para o exponencial
- / * *= = [ ] ω , , .=
Agora, considere a evolução discretizada do operador
onde é o operador de evolução ao longo de um intervalo de tempo infinitesimal. Os termos de ordem superiores podem ser negligenciados no limite . O operador é definido por
- / * *= = [ ] ω , , .=
Note-se que os operadores de evolução ao longo dos intervalos de tempo "passado" é exibido no lado direito do produto. Nós vemos que a fórmula é análoga à identidade acima satisfeita pelo exponencial, e podemos escrever
- / * *= = [ ] ω , , .=
A única sutileza que tivemos que incluir foi o operador de ordenação de tempo porque os fatores no produto que definem S acima foram tempo-ordenados, também (e os operadores não comutam, em geral) e o operador garante que este ordenação será preservada.
MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.
MECÃNICA GRACELI GERAL - QTDRC.
equação Graceli dimensional relativista tensorial quântica de campos G* = = [ / IFF ] * * = / G / .= / [DR] = = .= + G+ * * = = [ ] ω , , / T] / c [ [x,t] ] = |
//////
Teoria | Interação | mediador | Magnitude relativa | Comportamento | Faixa |
---|---|---|---|---|---|
Cromodinâmica | Força nuclear forte | Glúon | 1041 | 1/r7 | 1,4 × 10-15 m |
Eletrodinâmica | Força eletromagnética | Fóton | 1039 | 1/r2 | infinito |
Flavordinâmica | Força nuclear fraca | Bósons W e Z | 1029 | 1/r5 até 1/r7 | 10-18 m |
Geometrodinâmica | Força gravitacional | gráviton | 10 | 1/r2 | infinito |
G* = OPERADOR DE DIMENSÕES DE GRACELI.
DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES DE CAMPOS E ENERGIAS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI, E OUTROS.
/
/ * *= = [ ] ω , , .=
MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE INTERAÇÕES DE CAMPOS. EM ;
MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.
dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.
- [ G* /. ] [ [
G { f [dd]} ´[d] G* . / f [d] G* dd [G]
O ESTADO QUÂNTICO DE GRACELI
- [ G* /. ] [ [ ]
G* = DIMENSÕES DE GRACELI TAMBÉM ESTÁ RELACIONADO COM INTERAÇÕES DE ENERGIAS, QUÂNTICAS, RELATIVÍSTICAS, , E INTERAÇÕES DE CAMPOS.
o tensor energia-momento é aquele de um campo eletromagnético,
/ ***= = [ ] ω , , .=
Na física, a mecânica quântica relativista (RQM) é qualquer formulação covariante de Poincaré de mecânica quântica. Esta teoria é aplicável a partículas massivas[1] que se propagam em todas as velocidades até as comparáveis à velocidade da luz c e podem acomodar partículas sem massa.[2][3] A teoria tem aplicação em física de alta energia,[4] física de partículas e física de aceleradores,[5][6] bem como física atômica, química[7] e física da matéria condensada.[8][9]
Operador de velocidade
[editar | editar código-fonte]O operador de velocidade Schrödinger/Pauli pode ser definido para uma partícula maciça usando a definição clássica p = m v, e substituindo os operadores quânticos da maneira usual:[10]
- / ***= = [ ] ω , , .=
que possui autovalores que possuem qualquer valor. Na RQM, a teoria de Dirac, é:
- / ***= = [ ] ω , , .=
que deve ter autovalores entre ± c. Mais antecedentes teóricos podem ser visto na transformação de Foldy-Wouthuysen.[11][12][13][14]
A equação de Pauli , também conhecida como Equação Schrödinger-Pauli, é uma formulação da Equação de Schrödinger para um spin-partícula que leva em consideração a interação da rotação de uma partícula com o campo eletromagnético. Essas situações são os casos não-relativísticos da Equação de Dirac, onde as partículas em questão tem uma velocidade muito baixa para que os efeitos da relatividade tenham importância, podendo ser ignorados.
A equação de Pauli foi formulada por Wolfgang Pauli no ano de 1927.
Detalhes
[editar | editar código-fonte]A equação de Pauli é mostrada como:
- / ***= = [ ] ω , , .=
Onde:
- é a massa da partícula.
- é a carga da partícula.
- é um vetor de três componentes do dois-por-dois das matrizes de Pauli. Isto significa que cada componente do vetor é uma matriz de Pauli.
- é o vetor de três componentes da dinâmica dos operadores. Os componentes desses vetores são:
- é o vetor de três componentes do potencial magnético.
- é o potencial escalar elétrico.
- são os dois componentes spinor da onda, podem ser representados como .
De forma mais precisa, a equação de Pauli é:
- / ***= = [ ] ω , , .=
Mostra que o espaço Hamiltoniano (a expressão entre parênteses ao quadrado) é uma matriz operador dois-por-dois, por conta das matrizes de Pauli.
A equação propriamente dita é dada por:
- , / ***= = [ ] ω , , .=
na qual m é a massa de repouso do elétron, c é a velocidade da luz, p é o operador momentum linear é a constante de Planck divida por 2π, x e t são as coordenadas de espaço e tempo e ψ(x, t) é uma função de onda com quatro componentes.
Comments
Post a Comment